

bugs & biology grower group

FOR OUR COUNTRY

`ARING

Bugs & Biology Grower Group 2014 trials

Crop Nutrition to increase the Financial and Soil Bank Balance							
Authors	Raj Malik, Sally Thomson, Rob Rex and James Hopes						
Location of trial	Rockliffe (Kojonup WA) and Westendale (Wagin WA)						

DAFF - COMMUNITY LANDCARE GRANTS

Background

This project fits with goals of farmers within Bugs & Biology Group – that is to make more YIYO (yield in – yield out) profit by reducing input costs and the associated risks while maintaining or increasing gross margin. The group wants to see improved soil pH and nutrient recycling to reduce reliance on artificial fertilisers, improved soil water use efficiency, and use of fewer pesticides to make more profit.

The objective is to trial different crop nutrition strategies over a four year period to determine the profitability of each strategy (treatment) representing a farming system as well as looking at changes to soil physical, chemical and biological conditions.

The trial assumes that all nutrition packages included in the study have strengths and weaknesses and these trials will help in determining what they are.

A further objective is to strengthen relationships between farmers, scientists and industry to increase knowledge of soil biology and its applicability in Wheatbelt farming systems.

Aim

Comparing different methods of crop nutrition to provide some answers to the questions of farming profit and sustainability.

The specific aims are to compare different crop nutrition strategies over a four year period to

- Determine the profitability of each fertiliser strategy
- Identifying changes to soil physical, chemical and biological conditions.

Trial Details

2014 was the establishment year for this trial series. Two trials – 14GS40 at Rockliffe (Kojonup) and 14GS41 at Westendale (Wagin) - were established on 30m long and 1.8m wide plots with 22cm row spacing.

Soil samples were taken prior to seeding at 0-10cm, 10-20cm and 20-30cm depths and analysed for physico-chemical properties by Apal Agricultural Laboratory Magill South Australia (Table 1 appendix).

Plants were counted in each plot 4 weeks after seeding and calculated as plants/m². GreenSeeker NDVI (normalised difference vegetative index, an indicator of plant color and biomass synthesis) measurements at anthesis and peak season biomass cuts were taken from

Trial Details

each plot at Westendale site. These measurements were no taken at Rockliffe site due to its patchy growth.

Soil samples (0-10cm) were taken from each plot and sent to Microblitz University of Western Australia for biological analysis.

Plant height and lodging (9-0 score, $9 = no \log ng$, $0 = 100\% \log ng$) were measured before harvest at both sites.

Using plot harvester, each plot was harvested individually with grain yield recorded and subsample kept for grain quality analysis.

After cleaning, grain physical quality was measured for average grain weight, hectolitre weight and screen following CBH protocols. Grain quality for protein, hardness, flour yield, flour swelling volume and water absorption was determined using NIR spectroscopy.

Data was analysed using Genstat 16th edition.

Full trial details are given below and trial locations are given in appendix 1.

Trial - 14GS40

- Property: Rockliffe (Kojonup). James & Nina Hope. RMB 301 Samson Rd Kojonup 6395. Tel - 0404910118, e-mail: jameshope@rockliffe.com.au
- Agzone 3: Growing Season rainfall (GSR) = 500mm
- Soil type: Sandy loam (4.38 % organic carbon)
- Paddock rotation: 2013 canola, 2012 oats 2011 lupin
- Sowing date: 4 June 2014
- Crop Magenta wheat
- Seeding rate: 120 kg/ha in control and High input conventional and 80 kg/ha in rest of treatments

Trial - 14GS41

- Property: Westendale (Wagin). Rob & Caroline Rex. Westendale Grazing, 3199 Beaufort Rd Wagin 6315 WA. Tel 98 626067, 0427 626067, e-mail: westendale2@bigpond.com
- Agzone 3: Growing Season rainfall (GSR) 350 mm
- Soil type: Loamy sand (1.71 % organic carbon)
- Paddock rotation: 2013 canola, 2012 oats, 2011 pasture
- Sowing date: 5 June 2014
- Crop Mace wheat
- Seeding rate: 100 kg/ha

Treatment detail

At each site – Fertiliser strategies (treatments) = 9 Reps = 4 Total treatment plots = 36 Buffers = 29 Total plots = 61

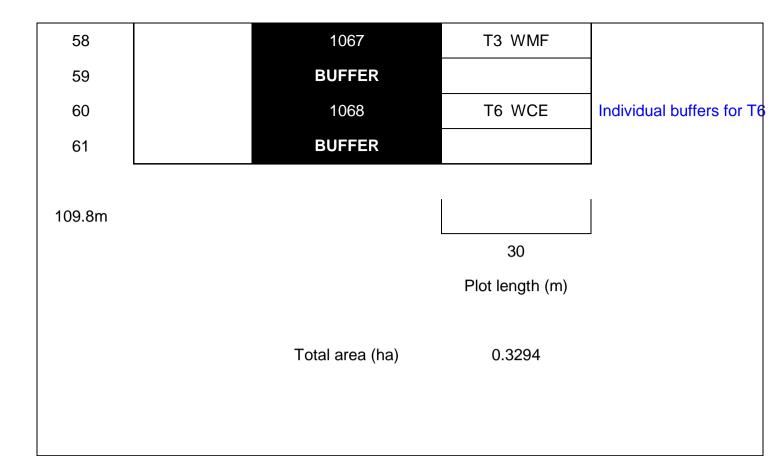
Treatment description

- T1. Nil nil fertiliser. Sometimes this may come up trumps for profitability, but over time it needs to be measured for overall soil fertility.
- T2. High input conventional Standard agronomists package that is designed for yield, often high risk, and theoretically detrimental to soil health and function.
- T3. Australian Mineral Fertiliser (AMF) the package recommended by WMF that is claimed to make more profit and get the soil working through biological cycling.
- T4. Australian Soil Planner Liquid A liquid fertiliser model, a complete fertiliser with a milled phosphate form. Designed to promote mineral cycling, help soil structure and profit.
- T5. Cropping Solutions (Agorganics Liquid) a complete liquid package with a different form of phosphate not available with any other product. Designed to promote mineral cycling, help soil structure and profit.
- T6. Biological (Worm/Compost Extract) a very low cost liquid system that has been shown to work well when biological function is optimal. Aimed at optimising biological function to drive profit.
- T7. Low input conventional granular system, aimed at getting the soil working through lower inputs, basically working to a tight budget.
- T8. Low input conventional and Biological cutting conventional fertiliser rates, and replacing the cost, (or some of the cost) with inputs that stimulate soil function.
- T9. Super buffer compost (10t/ha)

Treatment design

Rockliffe 14GS40

Run


1		BUFFER	
2		SUPER BUFFER	Т9
3		BUFFER	
4		1001	T4 ASPL
5		1002	T7 LIC
6		BUFFER	
7		1003	T2 HIC
8	Rep 1	1004	T5 AL
9		BUFFER	
10		1005	T8 LICB
11		1006	T3 AMF
12		BUFFER	

13		1007	T1 CONTROL	
14		BUFFER		
15		1008	T6 WCE	Individual buffers for T6
16		BUFFER		
			T0	
17		SUPER BUFFER	Т9	
18		BUFFER		
19		1009	T8 LICB	
20		1010	T5 AL	
21		BUFFER		
22		1011	T7 LIC	
23		1012	T3 AMF	
24	Rep 2	BUFFER		
25		1013	T4 ASPL	
26		BUFFER		
27		1014	T6 WCE	Individual buffers for T6
28		BUFFER		
29		1015	T2 HIC	
30		1016	T1 CONTROL	
31		BUFFER		
32		SUPER BUFFER	Т9	
33		BUFFER		
34		1017	T3 AMF	
35		1018	T7 LIC	
36		BUFFER		
37		1019	T2 HIC	
38		1020	T8 LICB	
39	Rep 3	BUFFER		
40		1021	T1 CONTROL	
41		1022	T5 AL	

42		BUFFER		
43		1023	T6 WCE	Individual buffers for T6
44		BUFFER		
45		1024	T4 ASPL	
46		BUFFER		
47		SUPER BUFFER	Т9	
48		BUFFER		
49		1025	T6 WCE	Individual buffers for T6
50		BUFFER		
51		1026	T7 LIC	
52		1027	T8 LICB	
53		BUFFER		
54	Rep 4	1028	T3 AMF	
55		1029	T1 CONTROL	
56		BUFFER		
57		1030	T2 HIC	
58		1031	T4 ASPL	
59		BUFFER		
60		1032	T5 AL	
61		BUFFER		
				-
109.8m				
			30	
			Plot length (m)	
		Total area (ha)	0.3294	
	Westendale	14GS41		

Run				
1		BUFFER		
2		SUPER BUFFER	Т9	
3		BUFFER		
4		1037	T2 HIC	
5		1038	T8 LICB	
6		BUFFER		
7		1039	T6 WCE	Individual buffers for T6
8	Rep 1	BUFFER		
9		1040	T5 AL	
10		1041	T3 WMF	
11		BUFFER		
12		1042	T7 LIC	
13		1043	T4 ASPL	
14		BUFFER		
15		1044	T1 CONTROL	
16		BUFFER		
17		SUPER BUFFER	Т9	
18		BUFFER		
19		1045	T2 HIC	
20		BUFFER		
21		1046	T6 WCE	Individual buffers for T6
22		BUFFER		
23		1047	T3 WMF	
24	Rep 2	1048	T1 CONTROL	
25		BUFFER		
26		1049	T5 AL	
27		1050	T4 ASPL	
28		BUFFER		

29		1051	T7 LIC	
30		1052	T8 LICB	
31		BUFFER		
32		SUPER BUFFER	Т9	
33		BUFFER		
34		1053	T7 LIC	
35		1054	T5 AL	
36		BUFFER		
37		1055	T6 WCE	Individual buffers for Te
38		BUFFER		
39	Rep 3	1056	T1 CONTROL	
40		1057	T3 WMF	
41		BUFFER		
42		1058	T8 LICB	
43		BUFFER		
44		1059	T4 ASPL	
45		1060	T2 HIC	
46		BUFFER		
47		SUPER BUFFER	Т9	
48		BUFFER		
49		1061	T1 CONTROL	
50		1062	T7 LIC	
51		BUFFER		
52		1063	T5 AL	
53		1064	T4 ASPL	
54	Rep 4	BUFFER		
55		1065	T2 HIC	
56		1066	T8 LICB	
57		BUFFER		
			-	·

Assumptions used in Gross Margins

Costings 2014

	Pri	ices GST	<u>exclusive</u>					
Product	Co	ost/unit	Units	Frei	ght/unit	Тс	tal Cost/unit	
Seed								
Mace Wheat	\$	0.37	kg			\$	0.37	
Magenta Wheat	\$	0.37	kg			\$	0.37	
Seed Dressing								
Gaucho	\$	37.00	litre			\$	37.00	
Microbe Premium Ag Blend	\$ 1	16.00	kg			\$ [·]	116.00	
Microlife	\$	20.00	litre			\$	20.00	
SD 14	\$	7.70				\$	7.70	
Fertiliser								
Agflow CZM:SOP blend	\$	0.85	Kg			\$	0.85	
Agras extra	\$	0.62	kg			\$	0.62	
Brix Master	\$	0.20	litre			\$	0.20	
Agrical	\$	1.05		\$	0.05	\$	1.10	
Calsap	\$	1.15	litre	\$	0.06	\$	1.21	
Compost	\$	0.17	kg			\$	0.17	
Compost extract	\$	0.03	litre			\$	0.03	
Copper Tracer	\$	2.77	litre			\$	2.77	
CS Red concent	\$	3.48	litres	\$	0.35	\$	3.83	
Dolomite	\$	47.00	tonne			\$	47.00	
Fine Phos	\$	1.15				\$	1.15	
Flexi-N	\$	0.47	kg	\$	0.03	\$	0.50	
Hi Cal	\$	0.04	kg	\$	0.02	\$	0.07	

Humic acid	\$	2.00			\$	2.00		
Burnt Lime	\$	90.00	tonne		\$	90.00		
Lime sand	\$	35.00			\$	35.00		
Limestone	\$	36.00			\$	36.00		
Manganese	\$	1.05			\$	1.05		
MAP	\$	0.69	kg		\$	0.69		
MKP	\$	1.80			\$	1.80		
NPK Crop	\$	0.73	kg		\$	0.73		
Potassum sulphate (soluble)	\$	1.20	kg		\$	1.20		
Sulphate of Ammonia	\$	0.22	kg	\$ 0.02	\$	0.24		
Sulphate of Ammonia (bulk)	\$	0.19		\$ 0.03	\$	0.22		
Super Phosphate	\$	0.32	kg	\$ 0.02	\$	0.34		
UAN	\$	0.69	litre		\$	0.69		
Urea	\$	0.60	kg		\$	0.60		
WMF-N	\$	0.62	kg		\$	0.62		
X14	\$	0.97	Litre		\$	0.97		
Zinc Tracer	\$	2.77	Litre		\$	2.77		
Chemical								
Glyphosate	\$	4.95	Litre		\$	4.95		
Jaguar	\$	25.50	Litre		\$	25.50		
Tigrex	\$	10.17	Litre		\$	10.17		
LVE MCPA	\$	9.32	Litre		\$	9.32		
Cypermethrin	\$	6.32	Litre		\$	6.32		
Sprayseed	\$	8.00	Litre		\$	8.00		
Trifluralin	\$	5.28	Litre		\$	5.28		
Sakura	\$	0.30	Gram		\$	0.30		
Operations	T	-			т			
Seed	\$	0.37	Kg		\$	0.37		
Spray	T		5		т	-		
Spread								
Harvest	Si	milar for all t	reatments		\$	55.00		
	•				Ŧ	00100		
Costings for Operations costs								
Spray					\$	7.00		
Seed					\$	38.00		
Spread					Ψ \$	6.00		
Spread Hi Rate Lime					Ψ \$	13.50		
Oprodu III Male LIIIIe					Ψ	10.00		
Wheat APW2 on farm					¢	260.00		
WINDAL AF WZ UNIAIIII					Ψ	-00.00		

Results

14GS40 - Rockliffe

General observations

Plant establishment was uneven at this site (Table 1) and varied significantly (p<0.05) among the treatments. In the beginning of season emerging seedlings were damaged in some of the plots by birds from nearby reserve. Site also had indications of rhizoctonia bare patches. Plants grown under High input conventional and Super buffer treatments were at least 5cm taller than rest of the treatments except Low input conventional. No lodging was observed and hence no treatment difference.

Table 1. Impact of different fertiliser strategies on plant density, NDVI, dry matter yield, plant height and lodging at Rockliffe.

Fertiliser strategy	Plant counts (/m ²)	NDVI	Dry matter yield (t/ha)	Plant height (cm)	Lodging (9-0)
Control	73	-	-	74	9
High input conventional	103	-	-	83	9
Australian Mineral Fertiliser	62	-	-	75	9
Australian Soil Planner Liquid	57	-	-	78	9
Cropping Solutions (Agroganics Liquid)	46	-	-	76	9
Biological (worm/compost extract)	66	-	-	75	9
Low input conventional	63	-	-	80	9
Conventional biological	61	-	-	78	9
Super Buffer (compost)	69	-	-	83	9
Average	67	-	-	78	9
LSD (p<0.05)	23	-	-	5	ns

Grain yield

Wheat grain yield varied between fertiliser strategies with High input conventional and Super Buffer producing significantly higher yield (p<0.05) than rest of the treatments. Lowest grain yield of 1.5 t/ha was achieved at control whilst the highest 3.2 t/ha was achieved at High input conventional treatments.

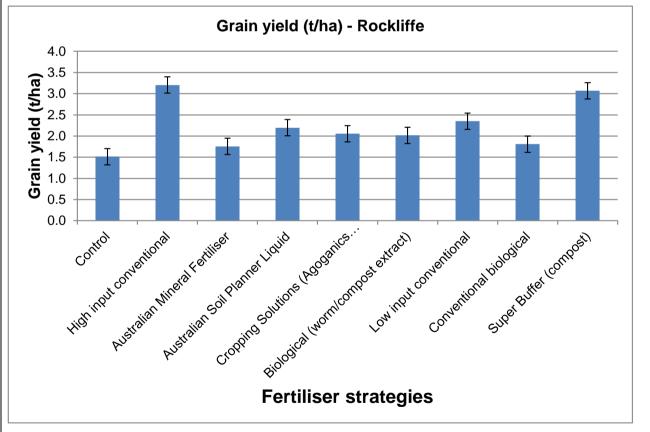


Figure 1. Effect of different fertiliser strategies on wheat grain yield at Rockliffe (LSD p<0.05 = 0.7 t/ha).

Gross margins

There was significant difference (p<0.05) between fertiliser strategies for gross margins. Whist High input conventional system was most profitable with \$380/ha, Super buffer was most unprofitable with income loss of \$1065/ha. Despite the higher grain yield (3.1 t/ha), it didn't offset the higher cost (\$1700/ha) of compost applied in this treatment.

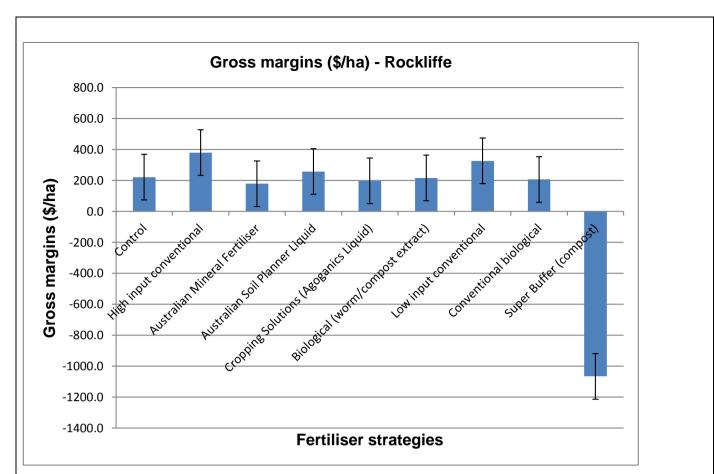


Figure 2. Effect of different fertiliser strategies on wheat gross margins at Rockliffe (LSD *p*<0.05 = \$186/ha).

Grain quality

There was no significant (p<0.05) treatment effect on any of the quality parameters measured (Table 2) and they successfully met CBH receival standards for APW1.

-					
Fertiliser strategy	Av grain wt (mg)	Hectolitre wt (kg/hl)	Screenings (%, <2.5mm)	Screenings (%, <2.2mm)	Screenings (%, <2.0mm)
Control	42.42	81.30	7.72	1.59	1.25
High input conventional	43.44	81.40	7.18	1.80	1.37
Australian Mineral Fertiliser	43.68	81.80	6.27	1.44	1.08
Australian Soil Planner Liquid	42.54	81.47	8.90	1.50	1.04
Cropping Solutions (Agroganics Liquid)	42.81	81.69	6.84	1.53	1.13
Biological (worm/compost extract)	42.87	81.53	7.46	1.80	1.32
Low input conventional	43.96	81.87	6.98	1.98	1.63
Conventional biological	43.08	81.69	7.37	1.65	1.21
Super Buffer (compost)	-	-	-	-	-
Average	43.10	81.59	7.34	1.66	1.25
LSD (p<0.05)	ns	ns	ns	ns	ns
Fertiliser strategy	Protein (%)	Hardness (%)	Flour yield (%)	Flour swelling volume (%)	Water absorptio (%)
Control	10.88	10.66	73.32	19.88	64.77
High input conventional	10.85	11.34	73.33	19.49	64.65
Australian Mineral Fertiliser	10.82	10.41	72.64	18.89	64.64
Australian Soil Planner Liquid	10.86	9.62	73.32	19.05	65.59
Cropping Solutions (Agroganics Liquid)	10.79	10.89	73.08	19.17	64.39
Biological (worm/compost extract)	11.23	9.72	73.18	19.19	65.35

Low input conventional	10.76	10.33	73.57	18.85	64.56
Conventional biological	11.06	10.90	72.48	19.39	64.44
Super Buffer (compost)	-	-	-	-	-
Average	10.90	10.48	73.11	19.24	64.80
LSD (p<0.05)	ns	ns	ns	ns	ns

14GS42 - Westendale

General observations

Plant establishment was very even at this site (Table 3) with no visible patchiness. There were no significant (p>0.05) treatment effects on dry matter yield, height and lodging. However, plant grown under High input conventional, Australian Soil Planner Liquid and Super Buffer were significantly greener (p<.05) than rest of the treatments.

Table 3. Impact of different fertiliser strategies on plant density, NDVI, dry matter yield, plant height and lodging at Westendale.

Fertiliser strategy	Plant counts (/m ²)	NDVI	Dry matter yield (t/ha)	Plant height (cm)	Lodging (9-0)
Control	196	0.379	8.5	84	9
High input conventional	183	0.559	9.3	85	9
Australian Mineral Fertiliser	187	0.489	9.2	84	9
Australian Soil Planner Liquid	170	0.532	9.1	85	9
Cropping Solutions (Agroganics Liquid)	172	0.502	9.0	86	9
Biological (worm/compost extract)	173	0.434	9.6	81	9
Low input conventional	184	0.470	9.1	85	9
Conventional biological	182	0.448	8.0	81	9
Super Buffer (compost)	178	0.506	9.5	84	9
Average	181	0.480	9.0	84	9
LSD (p<0.05)	ns	0.053	ns	ns	ns

Grain yield

Wheat grain yield varied between fertiliser strategies significantly (p<0.05) with control yield producing lower yield (3.5 t/ha) than rest of the treatments except Conventional Biological where it produced statistically similar yield. For rest of the treatment yield varied between 4.1 to 4.4 t/ha.

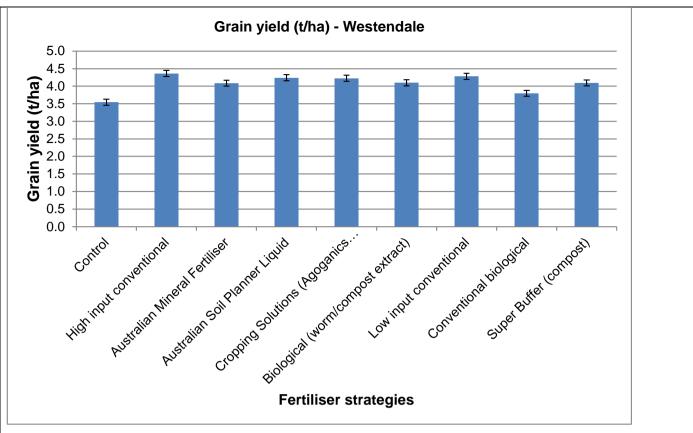
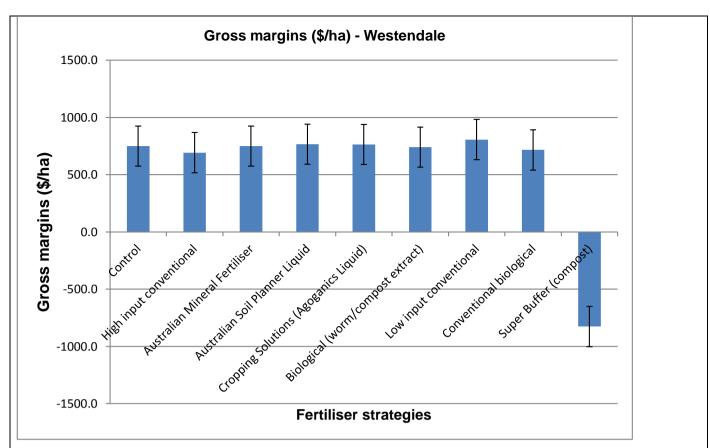



Figure 3. Effect of different fertiliser strategies on wheat grain yield at Westendale (LSD p<0.05 = 0.5 t/ha).

Gross margins

There was significant difference (p<0.05) between fertiliser strategies for gross margins. Whist there was no significant (p<0.05) difference between fertiliser treatments including control, Super Buffer was most unprofitable with income loss of \$830/ha. Despite the grain yield (4.1 t/ha), it didn't offset the higher cost (\$1700/ha) of compost applied in this treatment.

Grain quality

There was no significant (p<0.05) treatment effect on any of the physical grain quality parameters except on hectolitre weight (Table 4) in High input conventional. All physical quality parameters successfully met CBH receival standards for APW1. There were some treatment difference for grain hardness and water absorptions. Grain from control and Australian Mineral Fertiliser treatments were relatively harder than others due to less absorption of water (Table 4).

Fertiliser strategy	Av grain wt (mg)	Hectolitre wt (kg/hl)	Screenings (%, <2.5mm)	Screenings (%, <2.2mm)	Screenings (%, <2.0mm)
Control	43.73	82.02	6.03	1.85	1.39
High input conventional	41.79	80.99	9.62	1.65	1.12
Australian Mineral Fertiliser	43.49	81.96	8.02	2.24	1.86
Australian Soil Planner Liquid	42.76	81.38	8.46	1.57	1.14
Cropping Solutions (Agroganics Liquid)	43.56	81.82	6.46	1.32	1.01
Biological (worm/compost extract)	43.40	81.83	6.37	1.60	1.15
Low input conventional	42.97	81.57	6.54	1.42	1.12
Conventional biological	43.11	81.18	7.22	1.64	1.24
Super Buffer (compost)	-	-	-	-	-
Average	43.10	81.59	7.34	1.66	1.25
LSD (p<0.05)	ns	0.61	ns	ns	ns
Fertiliser strategy	Protein (%)	Hardness (%)	Flour yield (%)	Flour swelling volume (%)	Water absorptio (%)
Control	9.93	16.76	75.73	19.13	60.52
High input conventional	10.53	12.37	75.34	18.14	64.23
Australian Mineral Fertiliser	10.12	16.04	75.72	18.82	61.41
Australian Soil Planner Liquid	10.24	13.81	75.45	19.64	63.21
Cropping Solutions (Agroganics Liquid)	10.54	15.11	75.84	18.25	62.23

LSD (p<0.05)	ns	14.00	ns	ns	1.18
Average	10.23	14.66	75.37	18.81	62.49
Super Buffer (compost)	-	-	-	-	-
Conventional biological	10.21	13.87	74.67	18.36	63.40
Low input conventional	10.10	14.77	74.62	18.77	62.64
Biological (worm/compost extract)	10.13	14.52	75.55	19.39	62.31

Extension

A Field Day was organised at Westendale site on 14 October 2014. A total of 30 participants attended to Table 5. Response of participants to Field Day event conducted at Westendale on 14 October 2014.

Evaluation Questions (1=Lowest)	1 (Low)	2	3	4	
Pace of Workshop	0%	0%	28%	50%	
Quality of event/Workshop Content	0%	0%	11%	56%	
Facilitator(s)/presenter(s)	0%	0%	17%	50%	
Organisation	0%	0%	6%	44%	
Participants involvement	0%	0%	17%	50%	
Quality and quantity of handouts provided	0%	6%	28%	50%	
Venue	0%	0%	0%	44%	
Catering (if applicable)	0%	0%	11%	11%	
My knowledge & Skills (Before w/shop)	11%	11%	39%	28%	
My knowledge & Skills (After w/shop)	0%	0%	22%	67%	
My willingness to act (Before w/shop)	0%	6%	39%	44%	
My willingness to act (After w/shop)	0%	0%	6%	78%	

Acknowledgements

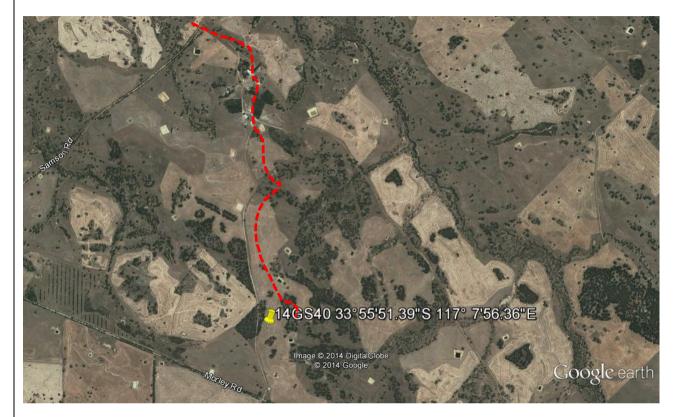
Australian Government Department of Agriculture, Community Landcare Grants program for funding the project, DAFWA Research Support Unit for trial operations, Microblitz University of Australia for conducting soil biology analysis, South West Catchments Council for funding years 2015-2017 to extend this trial - and of course the host farmers Rob & Caroline Rex and James & Nina Hope.

For more information contact

Dr Raj Malik, Research Officer, Department of Agriculture and Food WA, Katanning

Tel - 9821 3247, 0429018061, e-mail: raj.malik@agric.wa.gov.au

Rob Rex, Tel - 98 626067, 0427 626067, e-mail: westendale2@bigpond.com


James Hope, Tel - 0404910118, e-mail: jameshope@rockliffe.com.au

Sally Thomson, Tel - 9467 4322, e-mail: sally@sowingseeds.com.au

Trial locations

NORTH

14GS40 – James & Nina Hope "Rockliffe" off Samson Rd, South Kojonup SCALE: 3cm = 1km

ROBERT & CAROLINE REX – "Westendale Grazing" off Beaufort Rd, west WaginSCALE: Scale:5cm = 1km

Table 1. Soil Analysis results - prior to seeding Feb 2014

14GS40 - Rockliffe Property Unit 0-10cm 10-20cm 20-30cm pH_{Water} 5.44 5.73 5.92 pH _{CaCl} 4.81 4.94 5.12 EC 1:5 dS/m 0.09 0.04 0.04 Chloride 12.34 10.97 mg/kg 10.29 Boron mg/kg 0.56 0.53 0.55 Organic Carbon % 4.38 0.80 1.26 Colwell P 55.72 7.15 3.57 mg/kg Total P 490.01 130.04 95.03 mg/kg Colwell K 106.67 80.45 91.76 mg/kg Sulphur mg/kg 46.64 29.80 23.91 Exchangeable Ca m<u>g/kg</u> 750.21 593.55 545.50 Exchangeable Ca meq/100g 3.74 2.96 2.72 Exchangeable Ca % 82.94 78.88 76.80 Exchangeable Mg mg/kg 56.35 68.50 73.49 meg/100g Exchangeable Mg 0.46 0.56 0.60 Exchangeable Mg % 10.25 15.10 16.88 Exchangeable K 58.39 45.30 38.50 mg/kg meq/100g 0.10 Exchangeable K 0.15 0.12 Exchangeable K % 3.32 3.10 2.80 Exchangeable Na 36.13 25.07 27.56 mg/kg Exchangeable Na 0.16 0.11 0.12 meq/100g Exchangeable Na (ESP) % 3.49 2.92 3.52 CEC meq/100g 4.51 3.75 3.55 0.16 Zinc mg/kg 0.66 0.18 Copper 0.29 0.20 0.21 mg/kg 5.54 2.00 2.00 Manganese mg/kg 16.99 Iron mg/kg 30.57 16.29 Molybdenum mg/kg 4.11 3.68 2.80 m<u>g/kg</u> Aluminium 4.58 0.53 0.19 NO3 Nitrate 10.01 29.50 7.73 mg/kg NH4 Ammonium mg/kg 13.35 2.80 2.93 Total N (Dumas) % 0.31 0.10 0.08 PBI Index 271.23 203.72 157.82 14GS41 - Westendale Unit 0-10cm 10-20cm 20-30cm Property pH Water 5.61 5.86 6.14 4.74 4.70 4.81 pH _{CaCl} EC 1:5 dS/m 0.07 0.04 0.04 Chloride 26.05 14.40 15.08 mg/kg Boron mg/kg 0.61 0.43 0.52 Organic Carbon % 1.71 0.48 0.32 Colwell P 40.77 16.81 8.60 mg/kg Total P mg/kg 230.42 100.17 66.91 Colwell K 141.14 145.43 123.65 mg/kg Sulphur mg/kg 11.58 5.57 4.57 Exchangeable Ca 645.38 326.43 243.95 mg/kg Exchangeable Ca meq/100g 3.22 1.63 1.22 Exchangeable Ca % 61.22 50.66 70.75 Exchangeable Mg mg/kg 101.85 79.35 92.26 Exchangeable Mg meq/100g 0.84 0.65 0.76 30.91 Exchangeable Mg % 18.19 24.10 mg/kg 39.22 31.05 Exchangeable K 73.98 Exchangeable K meq/100g 0.19 0.10 0.08 % Exchangeable K 4.04 3.81 3.40 Exchangeable Na mg/kg 73.37 65.99 84.58 Exchangeable Na meq/100g 0.32 0.29 0.37 7.01 15.03 Exchangeable Na (ESP) % 10.86

CEC	meq/100g	4.57	2.67	2.42
Zinc	mg/kg	1.16	0.28	0.20
Copper	mg/kg	0.54	0.29	0.29
Manganese	mg/kg	11.19	4.56	2.75
Iron	mg/kg	121.60	51.44	47.12
Molybdenum	mg/kg	0.63	0.57	0.40
Aluminium	mg/kg	2.67	1.84	0.85
NO3 Nitrate	mg/kg	3.08	1.78	1.26
NH4 Ammonium	mg/kg	11.83	3.23	2.73
Total N (Dumas)	%	0.14	0.06	0.05
PBI Index		38.05	29.15	25.74